Shortcuts

convert_fx

class torch.quantization.quantize_fx.convert_fx(graph_module, is_reference=False, convert_custom_config_dict=None, _remove_qconfig=True)[source]

Convert a calibrated or trained model to a quantized model

Parameters
  • graph_module (*) – A prepared and calibrated/trained model (GraphModule)

  • is_reference (*) – flag for whether to produce a reference quantized model, which will be a common interface between pytorch quantization with other backends like accelerators

  • convert_custom_config_dict (*) –

    dictionary for custom configurations for convert function:

    convert_custom_config_dict = {
    
      # additional object (module/operator) mappings that will overwrite the default
      # module mappinng
      "additional_object_mapping": {
         "static": {
            FloatModule: QuantizedModule,
            float_op: quantized_op
         },
         "dynamic": {
            FloatModule: DynamicallyQuantizedModule,
            float_op: dynamically_quantized_op
         },
      },
    
      # user will manually define the corresponding quantized
      # module class which has a from_observed class method that converts
      # observed custom module to quantized custom module
      "observed_to_quantized_custom_module_class": {
         "static": {
             ObservedCustomModule: QuantizedCustomModule
         },
         "dynamic": {
             ObservedCustomModule: QuantizedCustomModule
         },
         "weight_only": {
             ObservedCustomModule: QuantizedCustomModule
         }
      },
    
      # Attributes that are not used in forward function will
      # be removed when constructing GraphModule, this is a list of attributes
      # to preserve as an attribute of the GraphModule even when they are
      # not used in the code
      "preserved_attributes": ["preserved_attr"],
    }
    

  • _remove_qconfig (*) – Option to remove the qconfig attributes in the model after convert.

Returns

A quantized model (GraphModule)

Example:

# prepared_model: the model after prepare_fx/prepare_qat_fx and calibration/training
quantized_model = convert_fx(prepared_model)

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources